Robust mixture of experts modeling using the skew $t$ distribution
نویسنده
چکیده
Mixture of Experts (MoE) is a popular framework in the fields of statistics and machine learning for modeling heterogeneity in data for regression, classification and clustering. MoE for continuous data are usually based on the normal distribution. However, it is known that for data with asymmetric behavior, heavy tails and atypical observations, the use of the normal distribution is unsuitable. We introduce a new robust non-normal mixture of experts modeling using the skew t distribution. The proposed skew t mixture of experts, named STMoE, handles these issues of the normal mixtures experts regarding possibly skewed, heavy-tailed and noisy data. We develop a dedicated expectation conditional maximization (ECM) algorithm to estimate the model parameters by monotonically maximizing the observed data log-likelihood. We describe how the presented model can be used in prediction and in model-based clustering of regression data. Numerical experiments carried out on simulated data show the effectiveness and the robustness of the proposed model in fitting non-linear regression functions as well as in model-based clustering. Then, the proposed model is applied to the real-world data of tone perception for musical data analysis, and the one of temperature anomalies for the analysis of climate change data. The obtained results confirm the usefulness of the model for practical data analysis applications.
منابع مشابه
Non-Normal Mixtures of Experts
Abstract Mixture of Experts (MoE) is a popular framework for modeling heterogeneity in data for regression, classification and clustering. For continuous data which we consider here in the context of regression and cluster analysis, MoE usually use normal experts, that is, expert components following the Gaussian distribution. However, for a set of data containing a group or groups of observati...
متن کاملThe Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models
In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...
متن کاملDetermination of the number of components in finite mixture distribution with Skew-t-Normal components
Abstract One of the main goal in the mixture distributions is to determine the number of components. There are different methods for determination the number of components, for example, Greedy-EM algorithm which is based on adding a new component to the model until satisfied the best number of components. The second method is based on maximum entropy and finally the third method is based on non...
متن کاملSkew-slash distribution and its application in topics regression
In many issues of statistical modeling, the common assumption is that observations are normally distributed. In many real data applications, however, the true distribution is deviated from the normal. Thus, the main concern of most recent studies on analyzing data is to construct and the use of alternative distributions. In this regard, new classes of distributions such as slash and skew-sla...
متن کاملSkew-t distribution is an appropriate alternative for the weighted exponential distribution
In this manuscript first a brief introduction to the Skew-t and Weighted exponential distributions is considered and some of their important properties will be studied. Then we will show that the Skew-t distribution is prefered to the Weighted exponential distribution in fitting by using the real data. Finally we will prove our claim by using the simulation method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1612.06879 شماره
صفحات -
تاریخ انتشار 2016